Honours and Awards
[1] [1] P. Gong, X. Wang, K.F. Yao. Effects of alloying elements on crystallization kinetics of Ti-Zr-Be bulk metallic glass. Journal of Materials Science, 2016, 51(11): 5321-5329.
[2] P. Gong, S.F. Zhao, H.Y. Ding, K.F. Yao, X. Wang. Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research, 2015, 30(18): 2772-2782.
[3] P. Gong, S.F. Zhao, X. Wang, K.F. Yao. Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry. Applied Physcs A: Materials Science & Processing, 2015, 120:145-153.
[4] P. Gong, K.F. Yao, S.F. Zhao. Cu alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. Journal of Thermal Analysis and Calorimetry, 2015, 121:697-704.
[5] P. Gong, K.F. Yao, H.Y. Ding. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass. Materials Letters, 2015, 156: 146-149.
[6] P. Gong, X. Wang, Y. Shao, N. Chen, X. Liu, K.F. Yao. A Ti-Zr-Be-Fe-Cu bulk metallic glass with superior glass-forming ability and high specific strength. Intermetallics, 2013, 43: 177-181.
[7] P. Gong, K.F. Yao, X. Wang, Y. Shao. A new centimeter-sized Ti-based quaternary bulk metallic glass with good mechanical properties. Advanced Engineering Materials, 2013, 15(8): 691-696.
[8] P. Gong, X. Wang, Y. Shao, N. Chen, K.F. Yao. Ti-Zr-Be-Fe quaternary bulk metallic glasses designed by Fe alloying. Science China Physics, Mechanics and Astronomy, 2013, 56(11): 2090-2097.
[9] P. Gong, K.F. Yao, H.Y. Ding. Centimeter-sized Ti-based quaternary bulk metallic glass prepared by water quenching. International Journal of Modern Physics B, 2013, 27(18): 1350087.
[10] P. Gong, K.F. Yao, Y. Shao. Effects of Fe addition on glass-forming ability and mechanical properties of Ti-Zr-Be metallic glass. Journal of Alloys and Compounds, 2012, 536: 26-29.
[11] P. Gong, K.F. Yao, Y. Shao. Lightweight Ti-Zr-Be-Al bulk metallic glasses with improved glass-forming ability and compressive plasticity. Journal of Non-Crystalline Solids, 2012, 358: 2620-2625.
[12] P. Gong, K.F. Yao, X. Wang, Y. Shao. Centimeter-sized Ti-based bulk metallic glass with high specific strength. Progress in Natural Science: Materials International, 2012, 22(5): 401-406.
[13] S.F. Zhao, P. Gong, J.F. Li, N. Chen, K.F. Yao. Quaternary Ti-Zr-Be-Ni bulk metallic glasses with large glass-forming abilty. Materials & Design, 2015, 85: 564-573.
[14] Z. Fu, P. Gong. The study for stability of closed-loop control system based on multiple-step incremental air-bending forming of sheet metal. The International Journal of Advanced Manufacturing Technology, 2014, 71(1-4): 357-364.
[15] S.B. Qiu, P. Gong, K.F. Yao. Work toughening effect in Zr41Ti14Cu12.5 -Ni10Be22.5 bulk metallic glass. Chinese Science Bulletin, 2011, 56: 3942-3947.
[16] S.F. Zhao, N. Chen, P. Gong, K.F. Yao. New centimeter-sized quaternary Ti-Zr-Be-Cu bulk metallic glasses with large glass forming ability. Journal of Alloys and Compounds, 2015, 647: 533-538.
[17] X. Liu, Y. Shao, P. Gong, K.F. Yao. Preparation of Fe-Ni-P-B metallic nano-ribbons. Materials Letters, 2013, 93: 103-106.
[18] X. Wang, Y. Shao, P. Gong, K.F. Yao. The effect of simulated thermal cycling on thermal and mechanical stability of a Ti-based bulk metallic glass. Journal of Alloys and Compounds, 2013, 575: 449-454.
[19] X. Wang, Y. Shao, P. Gong, K.F. Yao. Effect of thermal cycling on the mechanical properties of Zr41Ti14Cu12.5Ni10Be22.5 alloy. Science China Physics, Mechanics and Astronomy, 2012, 55(12): 2357-2361.
[20] Q. Li, J.F. Li, P. Gong, K.F. Yao, J.E. Gao, H.X. Li, Formation of bulk magnetic ternary Fe80P13C7 glassy alloy. Intermetallics, 2012, 26: 62-65.
[21] F. Han, J.H. Mo, P. Gong, M. Li. Method of closed loop springback compensation for incremental sheet forming process. Journal of Central South University of Technology, 2011, 18(5): 1509-1517.
[22] S.B. Qiu, K.F. Yao, P. Gong. Effects of crystallization fraction on mechanical properties of Zr-based metallic glass matrix composites. Science China Physics, Mechanics and Astronomy, 2010, 53(3): 1-6.
[23] Z. Fu, J. Mo, F. Han, P. Gong. Tool path correction algorithm for single-point incremental forming of sheet metal. The International Journal of Advanced Manufacturing Technology, 2013, 64: 1239-1248.
[24] Z. Fu, F. Han, J. Mo, P. Gong. Springback compensation of multiple-step incremental air-bending forming of sheet-metal. Journal of Huazhong University of Science and Technology, 2010, 38(5): 105-108. (in Chinese)
[25] Z. Fu, J. Mo, P. Gong, W. Zhang, Z. Li, K. Huang. Mould correction for sheet-metal multi-step incremental air-bending forming based on closed-loop control and FEM simulation. International Journal of Mechanical Sciences, 2009, 51: 732-740.
[26] F. Han, J.H. Mo, P. Gong. Incremental sheet NC forming springback prediction using genetic neural network. Journal of Huazhong Univeisty of Science and Technology, 2008, 36(1): 121-124. (in Chinese)
[27] S.F. Zhao, Y. Shao, P. Gong, K.F. Yao. A centimeter-sized quaternary Ti-Zr-Be-Ag bulk metallic glass. Advances in Materials Science and Engineering, 2014, 192187.